
Let Ω Ă Rn be a smooth open bounded domain in Rn. We call

utt “ ∆u, (1)

the wave equation. To solve the equation, we give the Cauchy condition

upx, 0q “ gpxq, utpx, 0q “ hpxq, x P Ω,

as well as a lateral boundary condition such as the Dirichlet condition or the Neumann condition for

the heat and Laplace equation.

1. Energy

Suppose that a solution upx, tq to the wave equation satisfying the Neumann condition that Bνu “ 0

holds on BΩ. Then, the energy

Eptq “
1
2

ż

Ω

|ut|
2 ` |∇u|2dx,

satisfies

E1ptq “
ż

Ω

ututt ` ∇u ¨ ∇utdx “
ż

Ω

ututt `

ż

BΩ

uνutdx´
ż

Ω

p∆uqutdx

“

ż

Ω

ututtdx´
ż

Ω

p∆uqutdx “
ż

Ω

utputt ´ ∆uqdx “ 0.

Namely,

Eptq “ Ep0q.

2. Separation of variables

Suppose that upx, tq satisfies utt “ c2uxx for some c ą 0 in tpx, tq : 0 ď x ď L, 0 ď tu. Moreover,

up0, tq “ upL, tq “ 0 holds for t ě 0, and upx, 0q “ gpxq, utpx, 0q “ hpxq hold for 0 ď x ď L.

Then, as like the Laplace and the heat equation, we consider a solution of the form upx, tq “

vpxqwptq with vp0q “ vpLq “ 0. Then, we can show vpxq “ A sinpmπL´1xq for m ě. Let us denote

it by vm. Then, the corresponding wmptq is C cospmπL´1ctq ` D sinpmπL´1ctq. Thus, we can obtain a

solution

upx, tq “
8
ÿ

m“1

ram cospmπL´1ctq ` bm sinpmπL´1ctqs sinpmπL´1xq,

1



2

where

am “
2
L

ż L

0
gpxq sinpmπL´1xqdx, bm “ mπL´1c

2
L

ż L

0
hpxq sinpmπL´1xqdx.

See section 5.3 of the textbook for more details.

3. 1D global Cauchy problem

Suppose that upx, tq satisfies utt “ c2uxx for some c ą 0 in tpx, tq : x P R, 0 ď tu. Moreover, and

upx, 0q “ gpxq, utpx, 0q “ hpxq hold for x P R, where g, h are smooth. Then, the d’Alembert formula

yields the unique solution

upx, tq “
1
2

“

gpx` ctq ` gpx´ ctqs `
1
2c

ż x`ct

x´ct
hpyqdy. (2)

See section 5.4 of the textbook.

Here, we observe an interesting fact that the formula give the unique solution without an infinity

boundary data. We recall that the heat equation must need an infinity boundary data to have the unique

solution. This phenomenon can be explained by the propagation speed.

For example, we consider the Cauchy data gpxq “ 0, hpxq ą 0 for |x| ă δ, and hpxq “ 0 for

|x| ě δ. Then, we can observe that upx, tq “ 0 for |x| ě ct` δ and upx, tq ą 0 for |x| ă ct` δ. Hence,

the wave equation has the finite propagation speed.

Suppose that upx, tq satisfies utt “ c2uxx` f px, tq for some c ą 0 in tpx, tq : x P R, 0 ď tu, where f

is smooth. Moreover, and upx, 0q “ utpx, 0q “ 0 hold for x P R. Then, the Duhamel’s methods yields

the unique solution

upx, tq “
1
2c

ż t

0
ds

ż x`cpt´sq

x´cpt´sq
f py, sqdy. (3)

See section 5.4 of the textbook.

4. Backward uniqueness for the wave equation and the heat equation

Given a solution upx, tq to the wave equation utt “ ∆u, we consider τ “ ´t. Then, we have

uττ “ ∆u. Therefore, we can solve the wave equation in the backward time.
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However, it is hard to solve the heat equation in the backward time. We show the backward unique-

ness of the solution to the heat equation.

Suppose that ut “ ∆u and vt “ ∆v hold in QT . Moreover, we have u “ v on BΩ ˆ r0,T s and

upx,T q “ vpx,T q on x P Ω. Then, we define a new solution w “ u ´ v to the heat equation and the

energy

Eptq “
ż

w2dx.

Then, we have

E1 “ ´2
ż

|∇w|2dx, E2 “ 4
ż

|∆w|2dx.

Therefore, the Hölder inequality shows

|E1|2 “ 4
ˆ
ż

|∇w|2dx
˙2

“ 4
ˆ
ż

wp∆wqdx
˙2

ď 4
ˆ
ż

wdx
˙2ˆż

|∆w|2dx
˙2

“ EE2. (4)

Assume that Eptq ą 0 on some interval I “ ra, bq P r0,T s and Epbq “ 0. Remind that we have

EpT q “ 0 and thus Epbq “ 0 hold for some b ď T . Then, f “ log E satisfies

f 2 “ pE2E ´ E12qE´2 ě 0

on I. Namely, f 1ptq ě f 1paq, and thus

f ptq ´ f paq ě
ż t

a
f 1paqds “ pt ´ aq f 1paq.

However, limtÑb f ptq “ ´8 since Epbq “ 0. Contradiction.

Therefore, we have Eptq “ 0 on t P r0,T s, namely the solution is unique.
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