Let Q < R" be a smooth open bounded domain in R". We call
Uy = Au, ()
the wave equation. To solve the equation, we give the Cauchy condition
u(x,0) =g(x), u(x,0)=h(x), x€eQ,

as well as a lateral boundary condition such as the Dirichlet condition or the Neumann condition for

the heat and Laplace equation.

1. ENERGY

Suppose that a solution u(x, ) to the wave equation satisfying the Neumann condition that ,u = 0

holds on 0Q. Then, the energy
1
E(r) -j w2 + [Vul2dx,
2 Ja

satisfies
E'(t) = J wity + Vu - Vudx = f Uy + f u, U dx — f (Au)u,dx
o) Q o0 o)

=J Uy dx — f (Au)udx = f ur(uyy — Au)dx = 0.
o) Q Q

Namely,

2. SEPARATION OF VARIABLES

Suppose that u(x, ) satisfies u;t = c2u,, for some ¢ > 0in {(x,7) : 0 < x < L,0 < t}. Moreover,
u(0,1) = u(L,t) = 0 holds for 7 > 0, and u(x,0) = g(x), u,(x,0) = h(x) hold for 0 < x < L.

Then, as like the Laplace and the heat equation, we consider a solution of the form u(x,t) =
v(x)w(t) with v(0) = v(L) = 0. Then, we can show v(x) = Asin(mxL~'x) for m >. Let us denote
it by v,,. Then, the corresponding wy,(¢) is C cos(mnL™'ct) + Dsin(mrxL~'ct). Thus, we can obtain a

solution

0
u(x, 1) = Z [@,, cos(mnL ™" ct) + by, sin(mrL™'ct)] sin(maL™'x),
m=1
1



where

2 (* 2
am = ZJ g(x) sin(maL™'x)dx, by = an_chf h(x) sin(maL ™" x)dx.
0

See section 5.3 of the textbook for more details.

3. 1D GroBaL CAUCHY PROBLEM

Suppose that u(x, t) satisfies u;t = c?u,, for some ¢ > 0in {(x,1) : x € R,0 < t}. Moreover, and
u(x,0) = g(x), us(x,0) = h(x) hold for x € R, where g, h are smooth. Then, the d’ Alembert formula
yields the unique solution

1 xX+ct
[g(x +ct) +g(x—ct)] + % J_ h(y)dy. 2)

| —

u(x,t) =

See section 5.4 of the textbook.

Here, we observe an interesting fact that the formula give the unique solution without an infinity
boundary data. We recall that the heat equation must need an infinity boundary data to have the unique
solution. This phenomenon can be explained by the propagation speed.

For example, we consider the Cauchy data g(x) = 0, h(x) > 0 for |x| < 6, and h(x) = O for
|x| = 6. Then, we can observe that u(x, 7) = 0 for |x| = ¢t + 6 and u(x,t) > 0 for |x| < ct+ 6. Hence,

the wave equation has the finite propagation speed.

Suppose that u(x, ¢) satisfies u;t = c?u,, + f(x,t) for some ¢ > 0in {(x,) : x € R,0 < 1}, where f
is smooth. Moreover, and u(x,0) = u;(x,0) = 0 hold for x € R. Then, the Duhamel’s methods yields

the unique solution

1 x+c(1—s)
u(x,t) = % J;) dsf f(y, s)dy. 3)

x—c(t—s)
See section 5.4 of the textbook.

4. BACKWARD UNIQUENESS FOR THE WAVE EQUATION AND THE HEAT EQUATION

Given a solution u(x,7) to the wave equation u,; = Au, we consider T = —¢. Then, we have

ur = Au. Therefore, we can solve the wave equation in the backward time.
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However, it is hard to solve the heat equation in the backward time. We show the backward unique-
ness of the solution to the heat equation.

Suppose that u;, = Au and v, = Av hold in Q7. Moreover, we have u = v on 0Q x [0,T] and
u(x,T) = v(x,T) on x € Q. Then, we define a new solution w = u — v to the heat equation and the

energy
E(t) = szdx.

Then, we have
E = —ZJ \Vw|?dx, E" = 4J|Aw|2dx.

Therefore, the Holder inequality shows

|E'|? = 4<J\Vw\zdx>2 = 4<jw(Aw)dx)2 < 4<dex>2(J|Aw\2dx>2 — EE". (%)

Assume that E(t) > 0 on some interval I = [a,b) € [0,T] and E(b) = 0. Remind that we have
E(T) = 0 and thus E(b) = 0 hold for some b < T. Then, f = log E satisfies

f// _ (E//E _ E/Z)E72 >0
on 1. Namely, f'(¢) > f’(a), and thus
10 = f0) = | 1 @ds = (1~ a)f @)

However, lim,_,;, f(t) = —o0 since E(b) = 0. Contradiction.

Therefore, we have E(¢) = 0 on ¢ € [0, T], namely the solution is unique.
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